Для того, чтобы понять, каким образом состав и последовательность расположения нуклеотидов в гене могут быть «переписаны» на РНК, вспомним принцип комплементарности, на основании которого построена двуспиральная молекула ДНК. Нуклеотиды одной цепи обусловливают характер противолежащих нуклеотидов другой цепи. Если на одной цепи находится А, то на том же уровне другой цепи стоит Т, а против Г всегда находится Ц. Других комбинаций не бывает. Принцип комплементарности действует и при синтезе информационной РНК. Против каждого нуклеотида одной из цепей ДНК встает комплементарный к нему нуклеотид информационной РНК. Таким образом, против Гднк встает Црнк против Цднк — Грнк, против Аднк — Урнк, против Тднк — Арнк. В результате образующаяся цепочка РНК по составу и последовательности своих нуклеотидов представляет собой точную копию состава и последовательности нуклеотидов одной из цепей ДНК. Молекулы информационной РНК направляются к месту, где происходит синтез белка, т. е. к рибосомам. Туда же идет из цитоплазмы поток материала, из которого строится белок, т. е. аминокислоты. В цитоплазме клеток всегда имеются аминокислоты, образующиеся в результате расщепления белков пищи.

Транспортные РНК

Аминокислоты попадают в рибосому не самостоятельно, а в сопровождении особых молекул РНК, специально приспособленных для транспорта аминокислот к рибосомам. Они так и называются: транспортные РНК (т - РНК). Транспортные РНК — это сравнительно короткие цепочки, состоящие всего из нескольких десятков нуклеотидов. На одном конце их молекулы имеется структура, к которой может присоединиться аминокислота. На другом конце транспортной РНК находится триплет нуклеотидов, который соответствует по коду данной аминокислоте. Например, молекула транспортной РНК для аминокислоты лизина на одном конце имеет «площадку» для «посадки» лизина, а на другом конце — триплет нуклеотидов: У—У—У. Так как существует не менее 20 различных аминокислот, то, очевидно, существует не менее 20 различных транспортных РНК. На каждую аминокислоту имеется своя транспортная РНК.

Реакция матричного синтеза. Для изучавшего неорганическую и органическую химию привычны, реакции, протекающие в растворах, в которых молекулы веществ находятся в хаотическом движении. Реакции в таких системах осуществляются в результате случайного столкновения молекул. Чем концентрация веществ выше, тем больше вероятность столкновения, тем выше скорость реакции. Напротив, при понижении концентрации веществ вероятность встречи молекул невелика и скорость реакции может быть ничтожной.

В живых системах мы встречаемся с новым типом реакций, наподобие описанной выше реакции редупликации ДНК или реакции синтеза РНК. Такие реакции неизвестны в неживой природе. Они называются реакциями матричного синтеза.

Термином «матрица» в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул. Матричный принцип лежит в основе важнейших синтетических реакций клетки, таких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах. Здесь происходит направленное стягивание мономеров в определенное место клетки — на молекулы, служащие матрицей, где реакция и осуществляется. Если бы такие реакции происходили путем случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно.

Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот — ДНК или РНК. Мономерные молекулы, из которых синтезируется полимер, — нуклеотиды или аминокислоты - соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, наперед заданном порядке. Затем происходит «сшивание» мономерных звеньев в полимерную цепь, и готовый полимер сбрасывается с матрицы. После этого матрица готова к сборке новой полимерной молекулы. Понятно, что, как на данной форме может производиться отливка только какой-то одной монеты, или медали, или какой-то одной буквы, так и на данной матричной молекуле может идти «сборка» только какого-то одного полимера.

Страницы: 1 2 3 4


Это интересно:

Химический состав белков
В яичном белке недостаточно лизина организма для млекопитающих (дефицит лизина равен примерно 6%). Добавление этой аминокислоты ускоряет рост животных. Белки коровьего молока содержат избыток лизина, лейцина, триптофана, гистидина и трео ...

Биология культивирования грибов рода Pleurotus
Особое внимание среди всех культивируемых грибов привлекает вешенка обыкновенная, или устричная. Ее можно выращивать на соломе, ветках, полусгнивших стволах деревьев, пнях, растительных остатках, отходах древесины. Технология выращивания ...

Получение персистентно инфицированных клеточных культур
Персистентной инфекции культур клеток при полном отсутствии ЦПД или минимальном его проявлении можно добиться несколькими способами. Одним из них является пассирование вируса с высокой множественностью инфекции и пересев выживающих клеток ...