Фотоморфогенез
Путь к пониманию фотоморфогенеза открыло изучение светочувствительности семян латука. Семена эти прорастают при непродолжительным облучении их красным светом, но последующее действие на них света крайнего красного участка спектра предотвращает прорастание. По-видимому, в семенах содержится фоторецептор, принимающий одну из двух конформаций; при одной он поглощает свет в окрестности 660 нм, а при другой — в крайней красной области спектра. Оказалось, что именно к такому внутримолекулярному переходу способен фитохром, существующий в двух альтернативных формах.
Система фитохрома регулирует широкую группу реакций различных растительных организмов: водорослей, мохообразных, папоротниковых, голосеменных и покрытосеменных. Из таких реакций можно отметить: появление листвы, удлинение междоузлия стебля, появление зачатков корней, прорастание спор.
Для осознания того, что эволюцию детерминируют чисто физические факторы, важен следующий экспериментальный факт: эффекты светопоглощения в узких спектральных полосах проявляются не только в виде биологических реакций органов, но могут наблюдаться также на клеточном и молекулярном уровнях. К числу фотоморфогенетических реакций относятся также: подвижность хлоропластов, синтез ферментов, синтез антоцианина, изменения проницаемости мембран. Именно этн четыре вида процессов играют решающую роль в клеточной дифференцировке и эволюции.
Растительные ткани способны проводить свет.
Было показано, что этиолированные ткани ряда растений функционируют подобно пучкам оптических волокон и способны проводить когерентные световые лучи на расстояние не менее 20 мм. Свет при этом распространяется вдоль тканей, претерпевая полное внутреннее отражение. Это показано для фасоли золотистой, овса, кукурузы. Даже кратковременное освещение кончика колеоптиля овса обычным светом может индуцировать морфогенез задолго до появления ростка из почвы. Проводят свет сами клетки, а не ^клеточные стенки.
Как стало известно с некоторых пор, достаточно освещать один только лист при определенных условиях, чтобы повлиять на все растение. Теперь можно объяснить это явление обнаруженными светопроводящими свойствами растительных тканей.
Растения способны «видеть» свет.
Физиологи растений были вынуждены признать, что растения способны «видеть». Бьерн подробно обсуждал сходства и различия растений и животных с этой точки зрения. Его работа озаглавлена: «Как растения видят». У растений нет ни глаз, ни нервной системы, но они обладают хорошо развитым «зрением». Животные с помощью зрения обнаруживают пищу, тогда как для растений свет сам по себе служит источником пищи. Различия же зрения животных и «зрения» растений заключаются в следующем.
Животные и человек с помощью зрения определяют положение предметов и наблюдают за их передвижением, но не очень успешно оценивают интенсивность света и его спектральный состав. Растения же получают с помощью зрения информацию четырех видов: 1) интенсивность света; 2).периодичность освещения; 3) спектральный состав света; 4) преимущественное направление его распространения.
Основной функцией хлорофилла является его участие в фотосинтезе, но он играет роль и в определении интенсивности света. Он влияет на открывание и закрывание устьиц на поверхности листа. Для оценки периодичности освещения растения используют фитохром. Другое соединение — криптохром — дает растению возможность улавливать направление лучей света. Его спектральный состав оценивается с помощью фико-цианина и аллофикоцианина.
Это интересно:
Вегетативная нервная система
Вегетативная нервная система отвечает за регулирование функций внутренних органов и желез, включая сердце, желудок, почки и поджелудочную железу. Соматическая нервная система состоит из двух основных компонентов - сенсорной и моторной сис ...
Заключение.
Человек, подобно любому другому виду, стремился освоить возможно большее пространство с возможно большей плотностью населения. Однако что-то ему мешало и ограничивало его возможности. Что же?
Как бы ни была развита техника, все необход ...
Переносчики катионов плазматической мембраны (е1e2-типа): атр-зависимые ионные насосы
Несколько про - и эукариотических ион-переносящих АТРаз составляют единое семейство и обладают сходными аминокислотными последовательностями и механизмами переноса ионов (табл.2).
Таблица 2.
Наиболее полно охарактеризованы Nа+ /К+-АТР ...