Генная инженерия
Страница 1

Важной составной частью биотехнологии является генетическая инженерия. Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств. В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин. Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока.

Генная инженерия - раздел молекулярной биотехнологии, связанный с осуществлением переноса генетического материала (ДНК) из одного организма в другой. Термин «генетическая инженерия» появился в научной литературе в 1970 г., а генетическая инженерия как самостоятельная дисциплина - в декабре 1972 г., когда П. Берг и сотрудники Стенфордского университета (США) получили первую рекомбинантную ДНК, состоящую из ДНК вируса SV40 и бактериофага λdvgal. В нашей стране благодаря развитию молекулярной генетики и молекулярной биологии, а также правильной оценке тенденций развития современной биологии 4 мая 1972 г. в Научном центре биологических исследований Академии наук СССР в г. Пущино (под Москвой) состоялось первое рабочее совещание по генетической инженерии. С этого совещания и ведется отсчет всех этапов развития генетической инженерии в России.

Бурное развитие генетической инженерии связано с разработкой новейших методов исследований, среди которых необходимо выделить основные:

Расщепление ДНК (рестрикция) необходимо для выделения генов и манипуляций с ними;

гибридизация нуклеиновых кислот, при которой, благодаря их способности связываться друг с другом по принципу комплементарности, можно выявлять специфические последовательности ДНК и РНК, а также совмещать различные генетические элементы. Используется в полимеразной цепной реакции для амплификации ДНК in vitro;

клонирование ДНК - осуществляется путем введения фрагментов ДНК или их групп в быстрореплицирующиеся генетические элементы (плазмиды или вирусы), что дает возможность размножать гены в клетках бактерий, дрожжей или эукариот;

определение нуклеотидных последовательностей (секвенирование) в клонируемом фрагменте ДНК. Позволяет определить структуру генов и аминокислотную последовательность кодируемых ими белков;

химико-ферментативный синтез полинуклеотидов - часто необходим для целенаправленной модификации генов и облегчения манипуляций с ними.

Б. Глик и Дж. Пастернак (2002) описали следующие 4 этапа экспериментов с рекомбинантной ДНК:

1. Из организма-донора экстрагируют нативную ДНК (клонируемая ДНК, встраиваемая ДНК, ДНК-мишень, чужеродная ДНК), подвергают ее ферментативному гидролизу (расщепляют, разрезают) и соединяют (лигируют, сшивают) с другой ДНК (вектор для клонирования, клонирующий вектор) с образованием новой рекомбинантной молекулы (конструкция «клонирующий вектор - встроенная ДНК»).

2. Эту конструкцию вводят в клетку-хозяина (реципиента), где она реплицируется и передается потомкам. Этот процесс называется трансформацией.

Страницы: 1 2


Это интересно:

Змеи поражают добычу вслепую
Известно, что многие виды змей даже будучи лишенными зрения способны поражать свои жертвы со сверхъестественной точностью. Рудиментарность их тепловых сенсоров не дает оснований утверждать, что одна только способность воспринимать тепло ...

Соединительная ткань
К соединительной ткани относят волокнистую, соединительные ткани со специальными свойствами и скелетную (хрящевая и костная). Соединительная ткань образована клетками и большим количеством межклеточного вещества, которое состоит из волоко ...

Синергетический процесс с социальной точки зрения
Говоря о развитии систем в историческом плане, мы невольно смотрим на них с позиции Господа Бога. Ученые так же, как правило, в качестве исследователей занимают позицию Всевышнего. И системы и их составляющие – всего лишь объекты рассмот ...