Роль флуктуаций на различных уровнях описания. Флуктуационно-диссипативные соотношения
Флуктуации это — небольшие нерегулярные, хаотические изменения какой-либо физической величины (т.е. являются случайными факторами самоорганизации). Обычно эти отклонения в физике связывают с тепловыми или квантовыми явлениями. Например, в квантовой механике температура одноатомного газа определяется кинетической энергией атомов. Но из-за столкновений атомов энергия каждого из них не остается постоянной, а все время меняется. Если взять большой объем, то энергия, усредненная по всем атомам, будет практически постоянна. Если же газа в этом объеме мало, то флуктуации энергии будут значительны. Величина флуктуации обратно пропорциональна корню квадратному из числа частиц N.
В статистической теории неравновесных процессов в открытых системах используется иерархия уравнений для макроскопических - коллективных переменных: кинетические уравнения для распределения в 6-мерном фазовом пространстве; гидродинамические уравнения; реакционно-диффузионные уравнения; уравнения химической кинетики; уравнения для квазистатических процессов в термодинамике. На всех перечисленных уровнях описания задача сводится к решению уравнений для усредненных по ансамблю Гиббса соответствующих микроскопических характеристик - уравнением для первых моментов соответствующих случайных функций. Такие уравнения можно назвать динамическими уравнениями для диссипативных систем (диссипативными динамическими уравнениями). Естественно, что уравнения для первых моментов не дают полного описания - необходим учет флуктуаций. Это утверждение является общим, поскольку в статистической теории существуют так называемые флуктуационно-диссипационные соотношения (ФДС). Тем самым флуктуации являются неизбежными для любой диссипативной системы. Весь вопрос сводится к тому, какова же роль флуктуаций или, напротив, какова область справедливости диссипативных динамических уравнений. Здесь мы вступаем в новую область - область флуктуационной диффузии. В соответствии с этим возникает проблема установления ФДС на различных уровнях описания для самых разных состояний - как близких к равновесному, так и далеких от него, как при малой диссипации, так и для сильно диссипативных систем. ФДС позволяют проследить за ростом флуктуаций при приближении к тем или иным критическим точкам - точкам неравновесных фазовых переходов, ведущих к образованию новых диссипативных структур в процессах самоорганизации. Несмотря на то, что первые ФДС установлены более шестидесяти лет назад (формула Эйнштейна в теории броуновского движения для коэффициента диффузии, формула Найквиста для интенсивности источника случайной ЭДС в электрической цепи), в этой области еще много нерешенных вопросов, особенно для открытых систем.
Это интересно:
Часовые гены
Уникальность супрахиазматического ядра еще и в том, что в его клетках работают так называемые часовые гены. Эти гены были впервые обнаружены у плодовой мушки дрозофилы в аналоге головного мозга позвоночных животных - головном ганглии, про ...
Пренатальный онтогенез
Для понимания индивидуальных особенностей строения тела человека необходимо познакомиться с развитием человеческого организма во внутриутробном периоде. Дело в том, что каждый человек имеет свои индивидуальные особенности внешнего облика ...
Практическое значение млекопитающих
Промысловые звери.
Из 350 видов млекопитающих фауны нашей страны примерно 150 видов потенциально могут служить объектами промысловой и спортивной охоты или отлова в целях расселения и содержания
в зоопарках в лесопарках. Больше всего так ...

