Белок полосы 3 - анионный переносчик из мембраны эритроцитов

Материалы » Строение и принцип действия переносчиков » Белок полосы 3 - анионный переносчик из мембраны эритроцитов

На долю белка полосы 3 приходится около 25% общего количества мембранных белков эритроцита человека; сходные белки присутствуют также в неэритроидных клетках. Этот белок выполняет несколько функций, причем их можно соотнести с двумя основными доменами белковой молекулы. N-концевая часть (41 000 Да) является гидрофильной и локализована с цитоплазматической стороны эритроцитарной мембраны. Она содержит места связывания для компонентов цитоскелета (анкирина), а также для ферментов гликолиза и гемоглобина. Этот домен можно удалить путем протеолиза, не затронув С-концевого домена (52 000 Да), который остается связанным с мембраной и опосредует Сl - /НСО3 - обмен, а также образует канал в мембране, через который может проникать вода. Внецитоплазматический компонент этой части белка содержит также углеводные антигенные детерминанты нескольких систем групп крови. В мембране белок полосы 3 находится в форме димера или тетрамера.

Было проведено клонирование и секвенирование участка ДНК, кодирующего белок полосы 3 из эритроцитов мыши. Эти данные послужили основой для построения модели белка полосы 3. Было высказано предположение, что он имеет 12 трансмембранных α-спиралей, при этом некоторые из них являются амфифильными. Экспериментальные данные, подтверждающие эту гипотезу, получены только для нескольких участков полипептида и основаны главным образом на результатах протеолиза и локализации связанных углеводов.

Обширные кинетические исследования согласуются с моделью с чередованием конформаций и одним местом связывания (см. рис.2). Однако скорость равновесного анионного обмена с помощью переносчика по меньшей мере в 104 раз превышает скорость транспорта как такового. Следовательно, незагруженный переносчик не претерпевает быстрых конформационных превращений, необходимых для того, чтобы анион мог связаться с мембраной. По данным ЯМР с использованием 35С1, у переносчика имеется единственное место связывания, и оно может быть обращено как внутрь, так и наружу. Результаты опытов с использованием ингибиторов транспорта тоже свидетельствуют о том, что в канале имеется единственное место связывания аниона, локализованное где-то в середине канала. При этом предполагается, что переход этого места связывания с одной стороны мембраны на другую блокируется неким "скользящим барьером", который перемещается вдоль канала в результате конформационных изменений. Лимитирующей стадией является конформационный переход нагруженного переносчика, но происходит он достаточно быстро, с частотой 105 с-1 при 37 °С. По-видимому, такая высокая скорость предотвращает значительные конформационные изменения в белке. Природа этого конформационного перехода и точная структура канала экспериментально не определены.

Конформационный переход загруженного переносчика, лимитирующий весь транспортный процесс, лишь в очень малой степени зависит от мембранного потенциала. Это согласуется с таким конформационным переходом, в результате которого через мембрану перемещается 0,1 связанного с белком заряда. Если этот переход сопряжен с перемещением анионного субстрата, то он должен сопровождаться переносом противоиона, например заряженной аминокислотной группы. В отличие от этого потенциалзависимое конформационное изменение, индуцирующее открывание натриевого канала, приводит к результирующему перемещению через мембрану шести связанных с белком зарядов.


Это интересно:

Класс первичные кольчецы (archiannelida)
Архианнелиды – наиболее примитивный класс кольчатых червей. Кольчатость их тела имеет первичный и примитивный характер. Первые признаки кольчатости возникают в поверхностных слоях тела. Процесс возникновения кольчатости исторически, видим ...

Селезеночник очереднолистный
Chrysosplenium artenifolum L., семейство Камнеломковые (Saxifragaceae). Селезеночник начинает цвести сразу же после схода снега. В топких сырых местах, лесах, кустарниках, по берегам рек и ручьев он образует сплошные заросли, желтые от ц ...

Состав вещества биосферы
Если говорить о биосфере в целом, то биогеохимические циклы можно разделить на два основных типа: круговорот газообразных веществ с резервным фондом в атмосфере или гидросфере (океан) и осадочный цикл с резервным фондом в земной коре. Ра ...