Автотрофные и гетеротрофные клетки. Фотосинтез. Хемосинтез
Страница 1

Материалы » Автотрофные и гетеротрофные клетки. Фотосинтез, хемосинтез, биосинтез белков » Автотрофные и гетеротрофные клетки. Фотосинтез. Хемосинтез

Автотрофные клетки. По способу получения органических соединений все клетки делятся на две группы. Одна группа клеток способна синтезировать органические вещества из неорганических соединений (СО2 и Н2О и т. д.). Из этих бедных энергией соединений клетки синтезируют глюкозу, аминокислоты, а затем и более сложные органические соединения: сложные углеводы, белки и т. д. Клетки, способные синтезировать органические соединения из неорганических, называются автотрофными или автотрофами. Главными автотрофами на Земле являются клетки зеленых растений Автотрофное питание присуще также небольшой группе микроорганизмов.

Гетеротрофные клетки. Другая группа клеток не способна синтезировать органические вещества из неорганических соединений. Эти клетки нуждаются в доставке уже готовых органических соединений. Животные поедают других животных и растения и получают с пищей готовые углеводы, жиры, белки. В ходе жизнедеятельности происходит расщепление этих веществ. Из части освободившихся при этом веществ — глюкозы, аминокислот и др. — синтезируются более сложные, присущие данной клетке вещества: гликоген, жиры, белки; другая часть расщепляется, и освобождающаяся при этом энергия используется для жизнедеятельности.

Клетки, не способные к синтезу органических соединений из неорганических веществ и нуждающиеся, поэтому в доставке готовых органических веществ извне, называются гетеротрофными клетками или гетеротрофами. Клетки всех животных, человека, большинства микроорганизмов, а также некоторых растений (например, грибов) являются гетеротрофами.

Фотосинтез. Синтез органических соединений из простых, бедных энергией веществ нуждается в притоке энергии извне. Зеленые растения используют для этой цели световую энергию Солнца. Растительные клетки обладают специальным механизмом, позволяющим им преобразовывать световую энергию в энергию химических связей. Этот процесс называется фотосинтезом.

Процесс фотосинтеза выражается следующим суммарным уравнением:

6СО2 + 6Н2О=C6H12O6+6О2

В ходе этого процесса вещества, бедные энергией (СО2 и Н2О), переходят в углевод — сложное богатое энергией органическое вещество. В результате фотосинтеза выделяется также молекулярный кислород.

Суммарное уравнение фотосинтеза не дает представления о его механизме. Это сложный, многоступенчатый процесс. Центральная роль в нем принадлежит хлорофиллу — органическому веществу зеленого цвета.

В зеленых листьях содержится примерно 1% хлорофилла от сухого веса. Хлорофилл растворяется в спирте, и его можно извлечь настаиванием листьев в спирте. Раствор хлорофилла имеет зеленый цвет и флуоресцирует.

Флуоресценция хлорофилла в растворе объясняется тем, что электроны в молекуле хлорофилла поглощают световую энергию, в результате они покидают орбиту, соответствующую их исходному состоянию, и перескакивают на высшую орбиту, соответствующую их «возбужденному» состоянию. Затем электроны возвращаются обратно на свою первоначальную орбиту, и при этом переходе они отдают поглощенную ими энергию в виде света флуоресценции. Хлорофилл в растворе не способен запасать энергию света. Другая картина наблюдается s клетке, где молекулы хлорофилла встроены в структуру хлоропласта и находятся в соединении с молекулами ферментов, липоидов и других веществ. Хлорофилл в зеленом листе при освещении не флуоресцирует. Поглощенная хлорофиллом энергия света здесь не рассеивается, а преобразуется в энергию химических связей.

Для того чтобы разобраться в механизме этого преобразования, обратимся к схеме фотосинтеза.

Процесс фотосинтеза начинается с освещения хлоропласта видимым светом. Фотон «ударяет» в электрон молекулы хлорофилла, сообщает ему энергию, и электрон переходит в «возбужденное» состояние: он покидает основную орбиту и перескакивает на высшую орбиту. После этого он сразу же падает обратно. При этом избыточная энергия электрона частично переходит в тепло (около 25%), а большей частью передается соединениям, находящимся в клетке, вызывая их превращения.

Часть «падающих» электронов захватывается ионами водорода. В клетке всегда имеется некоторое количество Н+ и ОН -ионов, так как в водном растворе часть молекул воды находится в диссоциированном состоянии:

Н2О = Н++ОН- (1)

Ион водорода присоединяет электрон и превращается в атом водорода:

Страницы: 1 2


Это интересно:

Стратегии толерантного отношения к старению. Типология стратегий отношения к старению
"Параллельно" с обширным материалом, накопленным геронтологической наукой и близкими к ней отраслями знания, в общественном сознании существует масса как позитивных, так и негативных стереотипов, связанных со старением и старост ...

Околоводные местообитания
Фауна водных и прибрежных птиц разнообразна и обычно характеризуется высокой численностью уток, куликов, чаек и других видов, что определяется высокой кормностью природных объектов. Связь с водой у разных представителей водных и прибрежн ...

Прогнозирование катастрофических событий
Из примера с кучей песка, стало очевидным, что катастрофическое событие не происходит внезапно, ему предшествуют менее значительные события. Прогнозирование катастрофических событий ведётся практически во всех областях современной науки. ...